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Overview

We define the tangent plane at a point on a smooth surface in space.

We calculate an equation of the tangent plane from the partial derivatives
of the function defining the surface.
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Tangent Planes and Normal Lines

If r = g(t)i + h(t)j + k(t)k is a smooth curve on the level surface
f (x , y , z) = c of a differentiable function f , then f (g(t), h(t), k(t)) = c of
this equation with respect to t leads to
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At every point along the curve, ∇f is orthogonal to the curve’s velocity
vector
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Tangent Planes and Normal Lines

Now let us restrict our attention to the curves that pass through P0. All
the velocity vectors at P0 are orthogonal to ∇f at P0, so the curve’s
tangent lines all lie in the plane through P0 normal to ∇f .

We call this plane the tangent plane of the surface at P0. The line
through P0 perpendicular to the plane is the surface’s normal line at P0.
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Tangent Planes and Normal Lines

Definition

The tangent plane at the point P0(x0, y0, z0) on the level surface
f (x , y , z) = c of a differentiable function f is a plane through P0 normal
to ∇f |P0 .
The normal line of the surface at P0 is the line through P0 parallel to
∇f |P0 .

Thus, the tangent plane and normal line have the following equations :

Tangent Plane to f (x , y , z) = c at P0 = (x0, y0, z0)

fx(P0)(x − x0) + fy (P0)(y − y0) + fz(P0)(z − z0) = 0.

Normal Line to f (x , y , z) = c at P0 = (x0, y0, z0)

x = x0 + fx(P0)t, y = y0 + fy (P0)t, z = z0 + fz(P0)t.
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Tangent Plane and Normal Line : An Example

Example

The tangent plane and normal line to the surface

f (x , y , z) = x2 + y2 + z − 9 = 0

at P0(1, 2, 4) are shown below.
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Plane Tangent to a Smooth Surface z = f (x , y) at
(x0, y0, f (x0, y0))

To find an equation for the plane tangent to a smooth surface z = f (x , y)
at a point P0(x0, y0, z0) where z0 = f (x0, y0), we first observe that the
equation z = f (x , y) is equivalent to f (x , y)− z = 0.

The surface z = f (x , y) is therefore the zero level surface of the function

F (x , y , z) = f (x , y)− z .

The partial derivatives of F are Fx = fx , Fy = fy , Fz = −1.

The plane tangent to the surface z = f (x , y) of a differentiable function f
at the point P0(x0, y0, z0) = (x0, y0, f (x0, y0)) is

fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)− (z − z0) = 0.
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Tangent Line to the Curve of Intersection of Two Surfaces

Let
f (x , y , z) = c and g(x , y , z) = d

be two surfaces and let C be the curve of intersection of the surfaces.

The tangent line to C at P0(x0, y0, z0) is orthogonal to both ∇f and ∇g
at P0, and therefore parallel to

v = ∇f ×∇g = v1i + v2j + v3k .

Hence the parametric equations of the tangent line to C at P0(x0, y0, z0) is

x = x0 + v1t, y = y0 + v2t, z = z0 + v3t.
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Tangent Line to the Curve of Intersection of Two Surfaces
- An Example

The surfaces f (x , y , z) = x2 + y2 − 2 = 0 and g(x , y , z) = x + z − 4 = 0
meet in an ellipse E .

The line tangent to E at the point
P0(1, 1, 3) is orthogonal to both ∇f and
∇g at P0, and therefore parallel to

v = ∇f ×∇g = 2i − 2j − 2k .

Hence the parametric equations for the
tangent line is

x = 1 + 2t, y = 1− 2t, z = 3− 2t.
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Exercises

1. How do you find the tangent plane and normal line at a point on a
level surface of a differentiable function f (x , y , z)? Give an example.

2. Find an equation for the plane tangent to the level surface
f (x , y , z) = c at the point P0. Also, find parametric equations for the
line that is normal to the surface at P0.
(a) x2 − y − 5z = 0, P0(2,−1, 1)
(b) x2 + y2 + z = 4, P0(1, 1, 2)

3. Find an equation for the plane tangent to the surface z = f (x , y) at
the given point.
(a) z = ln(x2 + y2), (0, 1, 0)
(b) z = 1/(x2 + y2), (1, 1, 1/2)

4. Find parametric equations for the line that is tangent to the curve of
intersection of the surfaces at the given point.
(a) Surfaces: x2 + 2y + 2z = 4, y = 1, Point: (1, 1, 1/2)
(b) Surfaces: x + y2 + z = 2, y = 1, Point: (1/2, 1, 1/2)
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